Posts

Showing posts from January, 2021

Mainframe computer

Image
A mainframe computer , informally called a mainframe or big iron , is a computer used primarily by large organizations for critical applications, bulk data processing (such as the census and industry and consumer statistics, enterprise resource planning, and large-scale transaction processing). A mainframe computer is larger and has more processing power than some other classes of computers, such as minicomputers, servers, workstations, and personal computers. Most large-scale computer-system architectures were established in the 1960s, but they continue to evolve. Mainframe computers are often used as servers. The term mainframe derived from the large cabinet, called a main frame , citation needed that houses the central processing unit and main memory of early computers. full citation needed Later, the term mainframe was used to distinguish high-end commercial computers from less powerful machines.

Design

Image
Modern mainframe design is characterized less by raw computational speed and more by: Redundant internal engineering resulting in high reliability and security Extensive input-output ("I/O") facilities with the ability to offload to separate engines Strict backward compatibility with older software High hardware and computational utilization rates through virtualization to support massive throughput. Hot-swapping of hardware, such as processors and memory. Their high stability and reliability enable these machines to run uninterrupted for very long periods of time, with mean time between failures (MTBF) measured in decades. Mainframes have high availability, one of the primary reasons for their longevity, since they are typically used in applications where downtime would be costly or catastrophic. The term reliability, availability and serviceability (RAS) is a defining characteristic of mainframe computers. Proper planning and implementation are required to realize these...

Characteristics

Image
Modern mainframes can run multiple different instances of operating systems at the same time. This technique of virtual machines allows applications to run as if they were on physically distinct computers. In this role, a single mainframe can replace higher-functioning hardware services available to conventional servers. While mainframes pioneered this capability, virtualization is now available on most families of computer systems, though not always to the same degree or level of sophistication. Mainframes can add or hot swap system capacity without disrupting system function, with specificity and granularity to a level of sophistication not usually available with most server solutions. citation needed Modern mainframes, notably the IBM zSeries, System z9 and System z10 servers, offer two levels of virtualization: logical partitions (LPARs, via the PR/SM facility) and virtual machines (via the z/VM operating system). Many mainframe customers run two machines: one in their primary dat...

Current market

Image
IBM, with z Systems, continues to be a major manufacturer in the mainframe market. In 2000, Hitachi co-developed the zSeries z900 with IBM to share expenses, and latest Hitachi AP10000 models are made by IBM. Unisys manufactures ClearPath Libra mainframes, based on earlier Burroughs MCP products and ClearPath Dorado mainframes based on Sperry Univac OS 1100 product lines. Hewlett-Packard sells its unique NonStop systems, which it acquired with Tandem Computers and which some analysts classify as mainframes. Groupe Bull's GCOS, Stratus OpenVOS, Fujitsu (formerly Siemens) BS2000, and Fujitsu-ICL VME mainframes are still available in Europe, and Fujitsu (formerly Amdahl) GS21 mainframes globally. NEC with ACOS and Hitachi with AP10000-VOS3 still maintain mainframe businesses in the Japanese market. The amount of vendor investment in mainframe development varies with market share. Fujitsu and Hitachi both continue to use custom S/390-compatible processors, as well as other CPUs (includ...

History

Image
Several manufacturers and their successors produced mainframe computers from the late 1950s until the early 21st Century, with gradually decreasing numbers and a gradual transition to simulation on Intel chips rather than proprietary hardware. The US group of manufacturers was first known as "IBM and the Seven Dwarfs":: p.83 usually Burroughs, UNIVAC, NCR, Control Data, Honeywell, General Electric, and RCA, although some lists varied. Later, with the departure of General Electric and RCA, it was referred to as IBM and the BUNCH. IBM's dominance grew out of their 700/7000 series and, later, the development of the 360 series mainframes. The latter architecture has continued to evolve into their current zSeries mainframes which, along with the then Burroughs and Sperry (now Unisys) MCP-based and OS1100 mainframes, are among the few mainframe architectures still extant that can trace their roots to this early period. While IBM's zSeries can still run 24-bit System/360 co...

Differences from supercomputers

A supercomputer is a computer at the leading edge of data processing capability, with respect to calculation speed. Supercomputers are used for scientific and engineering problems (high-performance computing) which crunch numbers and data, while mainframes focus on transaction processing. The differences are: Mainframes are built to be reliable for transaction processing (measured by TPC-metrics; not used or helpful for most supercomputing applications) as it is commonly understood in the business world: the commercial exchange of goods, services, or money. citation needed A typical transaction, as defined by the Transaction Processing Performance Council, updates a database system for inventory control (goods), airline reservations (services), or banking (money) by adding a record. A transaction may refer to a set of operations including disk read/writes, operating system calls, or some form of data transfer from one subsystem to another which is not measured by the processing speed ...

Notes

Mainframe computer

Image
A mainframe computer , informally called a mainframe or big iron , is a computer used primarily by large organizations for critical applications, bulk data processing (such as the census and industry and consumer statistics, enterprise resource planning, and large-scale transaction processing). A mainframe computer is larger and has more processing power than some other classes of computers, such as minicomputers, servers, workstations, and personal computers. Most large-scale computer-system architectures were established in the 1960s, but they continue to evolve. Mainframe computers are often used as servers. The term mainframe derived from the large cabinet, called a main frame , citation needed that houses the central processing unit and main memory of early computers. full citation needed Later, the term mainframe was used to distinguish high-end commercial computers from less powerful machines.

Design

Image
Modern mainframe design is characterized less by raw computational speed and more by: Redundant internal engineering resulting in high reliability and security Extensive input-output ("I/O") facilities with the ability to offload to separate engines Strict backward compatibility with older software High hardware and computational utilization rates through virtualization to support massive throughput. Hot-swapping of hardware, such as processors and memory. Their high stability and reliability enable these machines to run uninterrupted for very long periods of time, with mean time between failures (MTBF) measured in decades. Mainframes have high availability, one of the primary reasons for their longevity, since they are typically used in applications where downtime would be costly or catastrophic. The term reliability, availability and serviceability (RAS) is a defining characteristic of mainframe computers. Proper planning and implementation are required to realize these...

Characteristics

Image
Modern mainframes can run multiple different instances of operating systems at the same time. This technique of virtual machines allows applications to run as if they were on physically distinct computers. In this role, a single mainframe can replace higher-functioning hardware services available to conventional servers. While mainframes pioneered this capability, virtualization is now available on most families of computer systems, though not always to the same degree or level of sophistication. Mainframes can add or hot swap system capacity without disrupting system function, with specificity and granularity to a level of sophistication not usually available with most server solutions. citation needed Modern mainframes, notably the IBM zSeries, System z9 and System z10 servers, offer two levels of virtualization: logical partitions (LPARs, via the PR/SM facility) and virtual machines (via the z/VM operating system). Many mainframe customers run two machines: one in their primary dat...

Current market

Image
IBM, with z Systems, continues to be a major manufacturer in the mainframe market. In 2000, Hitachi co-developed the zSeries z900 with IBM to share expenses, and latest Hitachi AP10000 models are made by IBM. Unisys manufactures ClearPath Libra mainframes, based on earlier Burroughs MCP products and ClearPath Dorado mainframes based on Sperry Univac OS 1100 product lines. Hewlett-Packard sells its unique NonStop systems, which it acquired with Tandem Computers and which some analysts classify as mainframes. Groupe Bull's GCOS, Stratus OpenVOS, Fujitsu (formerly Siemens) BS2000, and Fujitsu-ICL VME mainframes are still available in Europe, and Fujitsu (formerly Amdahl) GS21 mainframes globally. NEC with ACOS and Hitachi with AP10000-VOS3 still maintain mainframe businesses in the Japanese market. The amount of vendor investment in mainframe development varies with market share. Fujitsu and Hitachi both continue to use custom S/390-compatible processors, as well as other CPUs (includ...

History

Image
Several manufacturers and their successors produced mainframe computers from the late 1950s until the early 21st Century, with gradually decreasing numbers and a gradual transition to simulation on Intel chips rather than proprietary hardware. The US group of manufacturers was first known as "IBM and the Seven Dwarfs":: p.83 usually Burroughs, UNIVAC, NCR, Control Data, Honeywell, General Electric, and RCA, although some lists varied. Later, with the departure of General Electric and RCA, it was referred to as IBM and the BUNCH. IBM's dominance grew out of their 700/7000 series and, later, the development of the 360 series mainframes. The latter architecture has continued to evolve into their current zSeries mainframes which, along with the then Burroughs and Sperry (now Unisys) MCP-based and OS1100 mainframes, are among the few mainframe architectures still extant that can trace their roots to this early period. While IBM's zSeries can still run 24-bit System/360 co...

Differences from supercomputers

A supercomputer is a computer at the leading edge of data processing capability, with respect to calculation speed. Supercomputers are used for scientific and engineering problems (high-performance computing) which crunch numbers and data, while mainframes focus on transaction processing. The differences are: Mainframes are built to be reliable for transaction processing (measured by TPC-metrics; not used or helpful for most supercomputing applications) as it is commonly understood in the business world: the commercial exchange of goods, services, or money. citation needed A typical transaction, as defined by the Transaction Processing Performance Council, updates a database system for inventory control (goods), airline reservations (services), or banking (money) by adding a record. A transaction may refer to a set of operations including disk read/writes, operating system calls, or some form of data transfer from one subsystem to another which is not measured by the processing speed ...

Notes